Ƶ-stability of crossed products by strongly outer actions II

Hiroki Matui, Yasuhiko Sato

研究成果: Contribution to journalArticle査読

25 被引用数 (Scopus)

抄録

We consider a crossed product of a unital simple separable nuclear stably finite Ƶ-stable C∗-algebra A by a strongly outer cocycle action of a discrete countable amenable group Γ. Under the assumption that A has finitely many extremal tracial states and Γ is elementary amenable, we show that the twisted crossed product C∗-algebra is Ƶ-stable. As an application, we also prove that all strongly outer cocycle actions of the Klein bottle group on Ƶ are cocycle conjugate to each other. This is the first classification result for actions of non-abelian infinite groups on stably finite C∗-algebras.

本文言語英語
ページ(範囲)1441-1496
ページ数56
ジャーナルAmerican Journal of Mathematics
136
6
DOI
出版ステータス出版済み - 12 1 2014
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Ƶ-stability of crossed products by strongly outer actions II」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル