TY - JOUR
T1 - β-Functionalized Push-Pull Porphyrin Sensitizers in Dye-Sensitized Solar Cells
T2 - Effect of π-Conjugated Spacers
AU - Ishida, Masatoshi
AU - Hwang, Daesub
AU - Zhang, Zhan
AU - Choi, Yung Ji
AU - Oh, Juwon
AU - Lynch, Vincent M.
AU - Kim, Dong Young
AU - Sessler, Jonanthan L.
AU - Kim, Dongho
N1 - Publisher Copyright:
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - A series of new β-functionalized push-pull-structured porphyrin dyes were synthesized so as to investigate the effect of the π-conjugated spacer on the performance of dye-sensitized solar cells (DSSCs). Suzuki- and Heck-type palladium-catalyzed coupling methodologies were used to obtain various β-functionalized porphyrins and β-benzoic acid (ZnPHn) and β-vinylbenzoic acid (ZnPVn) derivatives from β-borylated porphyrin precursors. Photophysical studies of the resulting porphyrins revealed a clear dependence on the nature of the β linker. In particular, it was found that a β-vinylene linkage perturbs the electronic structure of the porphyrin core; this is less true for a β-phenyl linkage. Theoretical analyses provided support for the intrinsic intramolecular charge-transfer character of the β-functionalized, push-pull porphyrins of this study. The extent of charge transfer depends on the nature of the β-conjugated linkage. The photovoltaic performances of the cells sensitized with β-phenylenevinylene ZnPVn exhibited higher power conversion efficiency values than those bearing β-phenyl linkages (ZnPHn). This was ascribed to differences in light-harvesting efficiency. Furthermore, compared to the use of a standard iodine-based electrolyte, the DSSC performance of cells made from the present porphyrins was improved by more than 1% upon using a cobalt(II/III)-based electrolyte. Under standard AM 1.5 illumination, the highest efficiency, 8.2%, was obtained by using cells made from the doubly β-butadiene-linked porphyrin.
AB - A series of new β-functionalized push-pull-structured porphyrin dyes were synthesized so as to investigate the effect of the π-conjugated spacer on the performance of dye-sensitized solar cells (DSSCs). Suzuki- and Heck-type palladium-catalyzed coupling methodologies were used to obtain various β-functionalized porphyrins and β-benzoic acid (ZnPHn) and β-vinylbenzoic acid (ZnPVn) derivatives from β-borylated porphyrin precursors. Photophysical studies of the resulting porphyrins revealed a clear dependence on the nature of the β linker. In particular, it was found that a β-vinylene linkage perturbs the electronic structure of the porphyrin core; this is less true for a β-phenyl linkage. Theoretical analyses provided support for the intrinsic intramolecular charge-transfer character of the β-functionalized, push-pull porphyrins of this study. The extent of charge transfer depends on the nature of the β-conjugated linkage. The photovoltaic performances of the cells sensitized with β-phenylenevinylene ZnPVn exhibited higher power conversion efficiency values than those bearing β-phenyl linkages (ZnPHn). This was ascribed to differences in light-harvesting efficiency. Furthermore, compared to the use of a standard iodine-based electrolyte, the DSSC performance of cells made from the present porphyrins was improved by more than 1% upon using a cobalt(II/III)-based electrolyte. Under standard AM 1.5 illumination, the highest efficiency, 8.2%, was obtained by using cells made from the doubly β-butadiene-linked porphyrin.
UR - http://www.scopus.com/inward/record.url?scp=84940957231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940957231&partnerID=8YFLogxK
U2 - 10.1002/cssc.201500085
DO - 10.1002/cssc.201500085
M3 - Article
C2 - 25755085
AN - SCOPUS:84940957231
VL - 8
SP - 2967
EP - 2977
JO - ChemSusChem
JF - ChemSusChem
SN - 1864-5631
IS - 17
ER -