4D N = 1 SYM supercurrent on the lattice in terms of the gradient flow

Kenji Hieda, Aya Kasai, Hiroki Makino, Hiroshi Suzuki

研究成果: Contribution to journalConference article査読

抄録

The gradient flow [1-5] gives rise to a versatile method to construct renor-malized composite operators in a regularization-independent manner. By adopting this method, the authors of Refs. [6-9] obtained the expression of Noether currents on the lattice in the cases where the associated symmetries are broken by lattice regularization. We apply the same method to the Noether current associated with supersymmetry, i.e., the supercurrent. We consider the 4D N = 1 super Yang-Mills theory and calculate the renormalized supercurrent in the one-loop level in the Wess-Zumino gauge. We then re-express this supercurrent in terms of the flowed gauge and flowed gaugino fields [10].

本文言語英語
論文番号11014
ジャーナルEPJ Web of Conferences
175
DOI
出版ステータス出版済み - 3 26 2018
イベント35th International Symposium on Lattice Field Theory, Lattice 2017 - Granada, スペイン
継続期間: 6 18 20176 24 2017

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

フィンガープリント 「4D N = 1 SYM supercurrent on the lattice in terms of the gradient flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル