A circuit-preserving mapping from multilevel to Boolean dynamics

Adrien Fauré, Shizuo Kaji

研究成果: Contribution to journalArticle

4 引用 (Scopus)

抜粋

Many discrete models of biological networks rely exclusively on Boolean variables and many tools and theorems are available for analysis of strictly Boolean models. However, multilevel variables are often required to account for threshold effects, in which knowledge of the Boolean case does not generalise straightforwardly. This motivated the development of conversion methods for multilevel to Boolean models. In particular, Van Ham's method has been shown to yield a one-to-one, neighbour and regulation preserving dynamics, making it the de facto standard approach to the problem. However, Van Ham's method has several drawbacks: most notably, it introduces vast regions of “non-admissible” states that have no counterpart in the multilevel, original model. This raises special difficulties for the analysis of interaction between variables and circuit functionality, which is believed to be central to the understanding of dynamic properties of logical models. Here, we propose a new multilevel to Boolean conversion method, with software implementation. Contrary to Van Ham's, our method doesn't yield a one-to-one transposition of multilevel trajectories; however, it maps each and every Boolean state to a specific multilevel state, thus getting rid of the non-admissible regions and, at the expense of (apparently) more complicated, “parallel” trajectories. One of the prominent features of our method is that it preserves dynamics and interaction of variables in a certain manner. As a demonstration of the usability of our method, we apply it to construct a new Boolean counter-example to the well-known conjecture that a local negative circuit is necessary to generate sustained oscillations. This result illustrates the general relevance of our method for the study of multilevel logical models.

元の言語英語
ページ(範囲)71-79
ページ数9
ジャーナルJournal of Theoretical Biology
440
DOI
出版物ステータス出版済み - 3 7 2018
外部発表Yes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

フィンガープリント A circuit-preserving mapping from multilevel to Boolean dynamics' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用