A cohomological interpretation of archimedean zeta integrals for GL 3× GL 2

Takashi Hara, Kenichi Namikawa

研究成果: Contribution to journalArticle査読

抄録

By studying an explicit form of the Eichler–Shimura map for GL 3, we describe a precise relation between critical values of the complete L-function for the Rankin–Selberg convolution GL 3× GL 2 over Q and the cohomological cup product of certain rational cohomology classes which are uniquely determined up to rational scalar multiples from the cuspidal automorphic representations under consideration. This refines rationality results on critical values due to Raghuram et al.

本文言語英語
論文番号68
ジャーナルResearch in Number Theory
7
4
DOI
出版ステータス出版済み - 12 2021

All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「A cohomological interpretation of archimedean zeta integrals for GL <sub>3</sub>× GL <sub>2</sub>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル