A combinatorial metrical task system problem under the uniform metric

Takumi Nakazono, Ken Ichiro Moridomi, kohei hatano, Eiji Takimoto

研究成果: 著書/レポートタイプへの貢献会議での発言

抜粋

We consider a variant of the metrical task system (MTS) problem under the uniform metric, where each decision corresponds to some combinatorial object in a fixed set (e.g., the set of all s-t paths of a fixed graph). Typical algorithms such as Marking algorithm are not known to solve this problem efficiently and straightforward implementations takes exponential time for many classes of combinatorial sets. We propose a modification of Marking algorithm, which we call Weighted Marking algorithm. We show that Weighted Marking algorithm still keeps O(log n) competitive ratio for the standard MTS problem with n states. On the other hand, combining with known sampling techniques for combinatorial sets, Weighted Marking algorithm works efficiently for various classes of combinatorial sets.

元の言語英語
ホスト出版物のタイトルAlgorithmic Learning Theory - 27th International Conference, ALT 2016, Proceedings
出版者Springer Verlag
ページ276-287
ページ数12
9925 LNAI
ISBN(印刷物)9783319463780
DOI
出版物ステータス出版済み - 1 1 2016
イベント27th International Conference on Algorithmic Learning Theory, ALT 2016 - Bari, イタリア
継続期間: 10 19 201610 21 2016

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9925 LNAI
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

その他

その他27th International Conference on Algorithmic Learning Theory, ALT 2016
イタリア
Bari
期間10/19/1610/21/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント A combinatorial metrical task system problem under the uniform metric' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Nakazono, T., Moridomi, K. I., hatano, K., & Takimoto, E. (2016). A combinatorial metrical task system problem under the uniform metric. : Algorithmic Learning Theory - 27th International Conference, ALT 2016, Proceedings (巻 9925 LNAI, pp. 276-287). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 9925 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-319-46379-7_19