A doubly nonnegative relaxation for modularity density maximization

Yoichi Izunaga, Tomomi Matsui, Yoshitsugu Yamamoto

研究成果: ジャーナルへの寄稿学術誌査読

抄録

Modularity proposed by Newman and Girvan is the most commonly used measure when the nodes of a network are grouped into internally tightly and externally loosely connected communities. However, some drawbacks have been pointed out, among which is resolution limit degeneracy: being inclined to leave small communities unidentified. To overcome this drawback, Li et al. have proposed a new measure called modularity density. In this paper, we propose an equivalent formulation of the modularity density maximization as a variant of semidefinite programming, and demonstrate that its relaxation problem provides a good upper bound on the optimal modularity density. We also propose a lower bounding algorithm based on a combination of spectral heuristics and dynamic programming.

本文言語英語
ページ(範囲)69-78
ページ数10
ジャーナルDiscrete Applied Mathematics
275
DOI
出版ステータス出版済み - 3月 31 2020
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「A doubly nonnegative relaxation for modularity density maximization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル