A dynamically realizable reconfiguration strategy for steering a spherical rolling with two internal rotors

Mikhail Mikhailovich Svinin, Akihiro Morinaga, Motoji Yamamoto

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

The paper addresses the problem of reconfiguring a spherical rolling robot actuated by two internal rotors that are placed on orthogonal axes. The problem is stated in dynamic formulation. To solve the problem, we employ the so-called geometric phase approach based on the fact that tracing a closed path in the space of input variables results in a non-closed path in the space of output variables. A working model for solving the motion planning problem is obtained by modifying the contact kinematic equations by the condition of dynamic realizability which constrains the component of the angular velocity of the rolling carrier and depends on the mass distribution. By using a motion planning strategy based on tracing a figure eight on the sphere, an exact and dynamically realizable motion planning algorithm is fabricated and verified under simulation. It is shown that the dynamically realizable contact paths are shorter and essentially different than those resulted from the kinematic model of pure rolling.

本文言語英語
ホスト出版物のタイトル2013 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013
出版社IEEE Computer Society
ページ1-6
ページ数6
ISBN(印刷版)9781467355582
DOI
出版ステータス出版済み - 1 1 2013
イベント2013 10th IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013 - Takamastu, 日本
継続期間: 8 4 20138 7 2013

出版物シリーズ

名前2013 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013

その他

その他2013 10th IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013
国/地域日本
CityTakamastu
Period8/4/138/7/13

All Science Journal Classification (ASJC) codes

  • 人工知能
  • 電子工学および電気工学
  • 機械工学

フィンガープリント

「A dynamically realizable reconfiguration strategy for steering a spherical rolling with two internal rotors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル