A Fast RSA-Type Public-Key Primitive Modulo pkq Using Hensel Lifting

Tsuyoshi Takagi

研究成果: Contribution to journalArticle査読

14 被引用数 (Scopus)

抄録

We propose a public-key primitive modulo pkq based on the RSA primitive. The decryption process of the proposed scheme is faster than those of two variants of PKCS #1 version 2.1, namely the RSA cryptosystem using Chinese remainder theorem (CRT) and the Multi-Prime RSA. The message M of the proposed scheme is decrypted from M mod pk and M mod q using the CRT, where we apply the Hensel lifting to calculate M mod pk from M mod p that requires only quadratic complexity O((log2 p)2). Moreover, we propose a trick that avoids modular inversions used for the Hensel lifting, and thus the proposed algorithm can be computed without modular inversion. We implemented in software both the proposed scheme with 1024-bit modulus p2g and the 1024-bit Multi-Prime RSA for modulus p 1p2p3, where p, q, p1, p 2, p3 are 342bits. The improvements of the proposed scheme over the Multi-Prime RSA are as follows: The key generation is about 49% faster, the decryption time is about 42% faster, and the total secret key size is 33% smaller.

本文言語英語
ページ(範囲)94-101
ページ数8
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E87-A
1
出版ステータス出版済み - 1 1 2004

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering
  • Applied Mathematics

フィンガープリント 「A Fast RSA-Type Public-Key Primitive Modulo p<sup>k</sup>q Using Hensel Lifting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル