A Finite Difference Scheme for the Richards Equation Under Variable-Flux Boundary

Yasuhide Fukumoto, Fengnan Liu, Xiaopeng Zhao

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

The Richards equation is a degenerate nonlinear partial differential equation which serves as a model for describing a flow of water through saturated/unsaturated porous medium under the action of gravity. This paper develops a numerical method, with a mathematical support, for the one-dimensional Richards equation. Implicit schemes based on a backward Euler format have been widely used, but have a difficulty in insuring the stability, because of the strong nonlinearity and degeneracy. A linearized semi-implicit finite difference scheme that is faster than the backward Euler implicit schemes is established, the stability of this scheme is proved by adding a small perturbation to the coefficient function, and an error estimate is made. It is found that there is a linear relationship between the discretization error in a certain norm and the perturbation strength.

本文言語英語
ホスト出版物のタイトルAdvances in Sustainable Construction and Resource Management
編集者Hemanta Hazarika, Gopal Santana Madabhushi, Kazuya Yasuhara, Dennes T. Bergado
出版社Springer Science and Business Media Deutschland GmbH
ページ231-245
ページ数15
ISBN(印刷版)9789811600760
DOI
出版ステータス出版済み - 2021
イベント1st International Symposium on Construction Resources for Environmentally Sustainable Technologies, CREST 2020 - Fukuoka, 日本
継続期間: 3 9 20213 11 2021

出版物シリーズ

名前Lecture Notes in Civil Engineering
144 LNCE
ISSN(印刷版)2366-2557
ISSN(電子版)2366-2565

会議

会議1st International Symposium on Construction Resources for Environmentally Sustainable Technologies, CREST 2020
国/地域日本
CityFukuoka
Period3/9/213/11/21

All Science Journal Classification (ASJC) codes

  • 土木構造工学

フィンガープリント

「A Finite Difference Scheme for the Richards Equation Under Variable-Flux Boundary」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル