A generalization of the anomalous attack for the ECDLP over Q p

Masaya Yasuda

研究成果: Contribution to journalArticle査読

抄録

The elliptic curve discrete logarithm problem (ECDLP) over a field K is as follows: given an elliptic curve E over K, a point S ∈ E(K), and a point T ∈ E(K) with T ∈ hSi, find the integer d such that T = dS. The hardness of the ECDLP over a finite field is essential for the security of all elliptic curve cryptographic schemes. Semaev, Smart, and Satoh and Araki independently proposed an efficient attack for the ECDLP over F p in the anomalous case, which is called the anomalous attack. In this paper, we generalize the method of the anomalous attack and give an algorithm for solving the ECDLP over the p-adic field Q p.

本文言語英語
ページ(範囲)1-9
ページ数9
ジャーナルInternational Journal of Pure and Applied Mathematics
77
1
出版ステータス出版済み - 5 28 2012
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「A generalization of the anomalous attack for the ECDLP over Q <sub>p</sub>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル