A genetic algorithm creates new attractors in an associative memory network by pruning synapses adaptively

Akira Imada, Keijiro Araki

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

We apply evolutionary algorithms to neural network model of associative memory. In the model, some of the appropriate configurations of the synaptic weights allow the network to store a number of patterns as an associative memory. For example, the so-called Hebbian rule prescribes one such configuration. However, if the number of patterns to be stored exceeds a critical amount (over-loaded), the ability to store patterns collapses more or less. Or, synaptic weights chosen at random do not have such an ability. In this paper, we describe a genetic algorithm which successfully evolves both the random synapses and over-loaded Hebbian synapses to function as associative memory by adoptively pruning some of the synaptic connections. Although many authors have shown that the model is robust against pruning a fraction of synaptic connections, improvement of performance by pruning has not been explored, as far as we know.

本文言語英語
ページ(範囲)1290-1297
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E81-D
11
出版ステータス出版済み - 1998

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「A genetic algorithm creates new attractors in an associative memory network by pruning synapses adaptively」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル