A MATROID GENERALIZATION OF THE SUPER-STABLE MATCHING PROBLEM

研究成果: ジャーナルへの寄稿学術誌査読

抄録

A super-stable matching is a solution concept in the variant of the stable matching problem in which the preferences may contain ties. Irving proposed a polynomial-time algorithm for the problem of checking the existence of a super-stable matching and finding a super-stable matching if a super-stable matching exists. In this paper, we consider a matroid generalization of a super-stable matching. We call our generalization of a super-stable matching a super-stable common independent set. This can be considered as a generalization of the matroid generalization of a stable matching for strict preferences proposed by Fleiner. We propose a polynomial-time algorithm for the problem of checking the existence of a super-stable common independent set and finding a super-stable common independent set if a super-stable common independent set exists.

本文言語英語
ページ(範囲)1467-1482
ページ数16
ジャーナルSIAM Journal on Discrete Mathematics
36
2
DOI
出版ステータス出版済み - 2022

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「A MATROID GENERALIZATION OF THE SUPER-STABLE MATCHING PROBLEM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル