A method for constructing real-time FEM-based simulator of stomach behavior with large-scale deformation by neural networks

Ken'ikchi Morooka, Tomoyuki Taguchi, Xian Chen, Ryo Kurazume, Makoto Hashizume, Tsutomu Hasegawa

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 被引用数 (Scopus)

抄録

This paper presents a method for simulating the behavior of stomach with large-scale deformation. This simulator is generated by the real-time FEM-based analysis by using a neural network. There are various deformation patterns of hollow organs by changing both its shape and volume. In this case, one network can not learn the stomach deformation with a huge number of its deformation pattern. To overcome the problem, we propose a method of constructing the simulator composed of multiple neural networks by 1)partitioning a training dataset into several subsets, and 2)selecting the data included in each subset. From our experimental results, we can conclude that our method can speed up the training process of a neural network while keeping acceptable accuracy.

本文言語英語
ホスト出版物のタイトルMedical Imaging 2012
ホスト出版物のサブタイトルImage-Guided Procedures, Robotic Interventions, and Modeling
DOI
出版ステータス出版済み - 2012
イベントMedical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, CA, 米国
継続期間: 2 5 20122 7 2012

出版物シリーズ

名前Progress in Biomedical Optics and Imaging - Proceedings of SPIE
8316
ISSN(印刷版)1605-7422

その他

その他Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling
Country米国
CitySan Diego, CA
Period2/5/122/7/12

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

フィンガープリント 「A method for constructing real-time FEM-based simulator of stomach behavior with large-scale deformation by neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル