A Microfluidic Device for Modulation of Organellar Heterogeneity in Live Single Cells

Ken Ichi Wada, Kazuo Hosokawa, Yoshihiro Ito, Mizuo Maeda

研究成果: Contribution to journalArticle査読

抄録

The quantitatively controlled organellar transfer between living single cells provides a unique experimental platform to analyze the contribution of organellar heterogeneity on cellular phenotypes. We previously developed a microfluidic device which can perform quantitatively controlled mitochondrial transfer between live single cells by promoting strictured cytoplasmic connections between live single cells, but its application to other organelles is unclear. In this study, we investigated the quantitative properties of peroxisome transfer in our microfluidic device. When cells were fused through a 10 or 4 µm long microtunnel by a Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel, and a subsequent recovery culture disconnected the fused cells. The peroxisome number being transferred through a 10 µm length of the microtunnel was smaller than that of 4 µm. These data suggest that our microfuidic device can perform a quantitative control of peroxisome transfer.

本文言語英語
ページ(範囲)499-505
ページ数7
ジャーナルanalytical sciences
37
3
DOI
出版ステータス出版済み - 2021
外部発表はい

All Science Journal Classification (ASJC) codes

  • 分析化学

フィンガープリント

「A Microfluidic Device for Modulation of Organellar Heterogeneity in Live Single Cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル