A neural algorithm incorporating winner‐take‐all subnets for combinatorial optimization

Kiichi Urahama

研究成果: Contribution to journalArticle査読

抄録

Using a neural net composed of subnets with a winner‐take‐all (WTA) mode of operations, the constraint that the variables must form a probability vector or a probability matrix can automatically be satisfied. Taking advantage of this property, this paper proposes a neural algorithm than can derive the approximate solution for a combinatorial optimization problem such as set partitioning. As a simple example, the 3‐partition maximum‐cut problem is considered. The worst‐case error is evaluated theoretically, and it is shown that the proposed method is one‐third (relative) approximate algorithm. For comparison, the performance of the conventional method also is evaluated theoretically. The performances also are compared by experiment. Both the theoretical and experimental results confirm that the proposed method can achieve better performance than the conventional method.

本文言語英語
ページ(範囲)93-100
ページ数8
ジャーナルSystems and Computers in Japan
24
6
DOI
出版ステータス出版済み - 1 1 1993
外部発表はい

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • 情報システム
  • ハードウェアとアーキテクチャ
  • 計算理論と計算数学

フィンガープリント

「A neural algorithm incorporating winner‐take‐all subnets for combinatorial optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル