A new method for magnetic position and orientation tracking

Eugene Paperno, Ichiro Sasada, Eduard Leonovich

研究成果: ジャーナルへの寄稿Conference article

99 引用 (Scopus)


The method is based on two-axis generation of a quasi-static rotating magnetic field and three-axis sensing. Two mutually orthogonal coils fed with phase-quadrature currents comprise the excitation source, which is equal to a mechanically rotating magnetic dipole. The resulting excitation field rotates elliptically at any position in the near-field region. The ac part of the squared field magnitude is a sinusoidal wave at twice the excitation frequency. The following set of parameters uniquely characterize the excitation at the sensor's position: the phase of the squared field waveform, relative to the excitation currents, the minimum field value, the ratio of the field extremes, and the orientation of the excitation field plane. Simple and explicit analytical expressions are given which relate the first three parameters to the azimuth, elevation, and distance from the source to the sensor, respectively. The orientation of the sensor axes, relative to the plane of the excitation, can easily be determined by comparing the phase anal amplitude of the measured signals against the phase anal amplitude of the excitation field at the sensor's position. Apart from simplicity, the proposed method increases the speed of tracking; a single period of excitation is in principle sufficient to obtain all of the information needed to determine both the sensor's position and orientation. A continuous sinusoidal excitation mode allows an efficient phase-locking anal accurate detection of the sensor output. It also improves the electromagnetic compatibility of the method.

ジャーナルIEEE Transactions on Magnetics
発行部数4 I
出版物ステータス出版済み - 7 1 2001
イベント8th Joint Magnetism and Magnetic Materials -International Magnetic Conference- (MMM-Intermag) - San Antonio, TX, 米国
継続期間: 1 7 20011 11 2001


All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Physics and Astronomy (miscellaneous)