A new parametric method to smooth time-series data of metabolites in metabolic networks

Atsuko Miyawaki, Kansuporn Sriyudthsak, Masami Yokota Hirai, Fumihide Shiraishi

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values.

本文言語英語
ページ(範囲)21-33
ページ数13
ジャーナルMathematical Biosciences
282
DOI
出版ステータス出版済み - 12 1 2016

All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学

フィンガープリント

「A new parametric method to smooth time-series data of metabolites in metabolic networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル