A new proof of an inequality between two secrecy exponents

Michiwaki Ukyo, Yutaka Jitsumatsu

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Hayashi and Matsumoto gave two lower bounds for the secrecy exponent for wiretap channels in 2011 and 2016. They proved that the latter exponent function is greater than or equal to the former one for any positive rate, input distribution and conditional probability of wiretapper's channel. In this paper, we give a new and simple proof of the inequality between the two exponent functions. To prove the inequality we use non-negativity of Kullback-Leibler distance together with a lemma that was introduced by Arimoto to derive a computation algorithm for error and correct decoding probability exponent for discrete memoryless channels.

本文言語英語
ホスト出版物のタイトルProceedings of 2018 International Symposium on Information Theory and Its Applications, ISITA 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ747-751
ページ数5
ISBN(電子版)9784885523182
DOI
出版ステータス出版済み - 3 8 2019
イベント15th International Symposium on Information Theory and Its Applications, ISITA 2018 - Singapore, シンガポール
継続期間: 10 28 201810 31 2018

出版物シリーズ

名前Proceedings of 2018 International Symposium on Information Theory and Its Applications, ISITA 2018

会議

会議15th International Symposium on Information Theory and Its Applications, ISITA 2018
国/地域シンガポール
CitySingapore
Period10/28/1810/31/18

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンスの応用
  • 情報システム

フィンガープリント

「A new proof of an inequality between two secrecy exponents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル