A new robust neural network controller designing method for nonlinear systems

H. Chen, K. Hirasawa, J. Hu, J. Murata

研究成果: Contribution to conferencePaper査読

抄録

A new designing method of a robust neural network controller against system environment changes using Universal Learning Network (ULN) is considered in this paper. With the introduced method, the worst values of system parameters can be searched as well as the optimization of controller parameters through a dual learning algorithm, which includes maximization and minimization procedures. Therefore, the robust controller can be obtained by minimizing the criterion function regarding the worst values of system parameters. Simulation results demonstrate that the system performance has been improved compared with the conventional method by using the proposed method.

本文言語英語
ページ497-502
ページ数6
出版ステータス出版済み - 1 1 2001
イベントInternational Joint Conference on Neural Networks (IJCNN'01) - Washington, DC, 米国
継続期間: 7 15 20017 19 2001

その他

その他International Joint Conference on Neural Networks (IJCNN'01)
Country米国
CityWashington, DC
Period7/15/017/19/01

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

フィンガープリント 「A new robust neural network controller designing method for nonlinear systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル