TY - JOUR
T1 - A new semi-empirical model for estimating the drag coefficient of the vertical random staggered arrays using LES
AU - Mohammad, Ahmad Faiz
AU - Zaki, Sheikh Ahmad
AU - Ikegaya, Naoki
AU - Hagishima, Aya
AU - Ali, Mohamed Sukri Mat
PY - 2018/9
Y1 - 2018/9
N2 - Sheltering of buildings has a significant impact on the total drag of an urban surface. This study performs large eddy simulations (LESs) of flows over vertical random arrays (comprised of buildings with height variability) in staggered layout to estimate the drag coefficient, CD. The vertical random arrays are configured in several frontal area densities, λF (ratio of buildings’ frontal area to total surface area) ranging from 0.09 to 0.81. The sheltering effect is parameterized using the individual building's wind pressure coefficient, Cp(t) normalized with that of the isolated building, Cp(iso). The ratio Cp(t)/Cp(iso) is well correlated with the target building's frontal area density, λf(t). Subsequently, the relationship between Cp(t) and λf(t) is expressed using power law equations for three building categories based on the height-to-width ratio, αp(t): tall (2.64 ≤ αp(t) ≤ 3.76), medium-rise (1.32 ≤ αp(t) ≤ 2.00), and low-rise (0.36 ≤ αp(t) ≤ 0.84). Based on the Cp(t), an equation of the CD is formulated, yielding the following outcomes. Firstly, the predicted CD values are mostly within 10% of the previous experimental results. Secondly, a semi-empirical model is derived, whereby the predicted CD values are generally consistent for various vertical random arrays.
AB - Sheltering of buildings has a significant impact on the total drag of an urban surface. This study performs large eddy simulations (LESs) of flows over vertical random arrays (comprised of buildings with height variability) in staggered layout to estimate the drag coefficient, CD. The vertical random arrays are configured in several frontal area densities, λF (ratio of buildings’ frontal area to total surface area) ranging from 0.09 to 0.81. The sheltering effect is parameterized using the individual building's wind pressure coefficient, Cp(t) normalized with that of the isolated building, Cp(iso). The ratio Cp(t)/Cp(iso) is well correlated with the target building's frontal area density, λf(t). Subsequently, the relationship between Cp(t) and λf(t) is expressed using power law equations for three building categories based on the height-to-width ratio, αp(t): tall (2.64 ≤ αp(t) ≤ 3.76), medium-rise (1.32 ≤ αp(t) ≤ 2.00), and low-rise (0.36 ≤ αp(t) ≤ 0.84). Based on the Cp(t), an equation of the CD is formulated, yielding the following outcomes. Firstly, the predicted CD values are mostly within 10% of the previous experimental results. Secondly, a semi-empirical model is derived, whereby the predicted CD values are generally consistent for various vertical random arrays.
UR - http://www.scopus.com/inward/record.url?scp=85053070757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053070757&partnerID=8YFLogxK
U2 - 10.1016/j.jweia.2018.08.003
DO - 10.1016/j.jweia.2018.08.003
M3 - Article
AN - SCOPUS:85053070757
VL - 180
SP - 191
EP - 200
JO - Journal of Industrial Aerodynamics
JF - Journal of Industrial Aerodynamics
SN - 0167-6105
ER -