A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion

Kazuhide Nakata, Makoto Yamashita, Katsuki Fujisawa, Masakazu Kojima

研究成果: ジャーナルへの寄稿学術誌査読

17 被引用数 (Scopus)

抄録

A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SDPARA can effectively solve SDPs with a large number of equality constraints; however, it does not solve SDPs with a large scale matrix variable with similar effectiveness. SDPA-C is a primal-dual interior-point method using the positive definite matrix completion technique by Fukuda et al., and it performs effectively with SDPs with a large scale matrix variable, but not with a large number of equality constraints. SDPARA-C benefits from the strong performance of each of the two methods. Furthermore, SDPARA-C is designed to attain a high scalability by considering most of the expensive computations involved in the primal-dual interior-point method. Numerical experiments with the three parallel software packages SDPARA-C, SDPARA and PDSDP by Benson show that SDPARA-C efficiently solves SDPs with a large scale matrix variable as well as a large number of equality constraints with a small amount of memory.

本文言語英語
ページ(範囲)24-43
ページ数20
ジャーナルParallel Computing
32
1
DOI
出版ステータス出版済み - 1月 2006
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 人工知能

フィンガープリント

「A parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル