A positive proportion of cubic curves over Q admit linear determinantal representations

研究成果: Contribution to journalArticle査読

抄録

Can a smooth plane cubic be defined by the determinant of a square matrix with entries in linear forms in three variables? If we can, we say that it admits a linear determinantal representation. In this paper, we investigate linear determinantal representations of smooth plane cubics over various fields, and prove that any smooth plane cubic over a large field (or an ample field) admits a linear determinantal representation. Since local fields are large, any smooth plane cubic over a local field always admits a linear determinantal representation. As an application, we prove that a positive proportion of smooth plane cubics over Q, ordered by height, admit linear determinantal representations. We also prove that, if the conjecture of Bhargava-Kane-Lenstra-Poonen-Rains on the distribution of Selmer groups is true, a positive proportion of smooth plane cubics over Q fail the local-global principle for the existence of linear determinantal representations.

本文言語英語
ページ(範囲)177-204
ページ数28
ジャーナルJournal of the Ramanujan Mathematical Society
33
2
出版ステータス出版済み - 6 2018
外部発表はい

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント 「A positive proportion of cubic curves over Q admit linear determinantal representations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル