A recurrent probabilistic neural network with dimensionality reduction based on time-series discriminant component analysis

Hideaki Hayashi, Taro Shibanoki, Keisuke Shima, Yuichi Kurita, Toshio Tsuji

研究成果: Contribution to journalArticle査読

21 被引用数 (Scopus)

抄録

This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

本文言語英語
論文番号7045517
ページ(範囲)3021-3033
ページ数13
ジャーナルIEEE Transactions on Neural Networks and Learning Systems
26
12
DOI
出版ステータス出版済み - 12 1 2015
外部発表はい

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • 人工知能

フィンガープリント

「A recurrent probabilistic neural network with dimensionality reduction based on time-series discriminant component analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル