A self-stabilizing ring orientation algorithm with a smaller number of processor states

Narutoshi Umemoto, Hirotsugu Kakugawa, Masafumi Yamashita

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

A distributed system is said to be self-stabilizing if it will eventually reach a legitimate system state regardless of its initial state. Because of this property, a self-stabilizing system is extremely robust against failures; it tolerates any finite number of transient failures. The ring orientation problem for a ring is the problem of all the processors agreeing on a common ring direction. This paper focuses on the problem of designing a deterministic self-stabilizing ring orientation system with a small number of processor states under the distributed daemon. Because of the impossibility of symmetry breaking, under the distributed daemon, no such systems exist when the number n of processors is even. Provided that n is odd, the best known upper bound on the number of states is 256 in the link-register model, and eight in the state-reading model. We improve the bound down to 63 = 216 in the link-register model.

本文言語英語
ページ(範囲)579-584
ページ数6
ジャーナルIEEE Transactions on Parallel and Distributed Systems
9
6
DOI
出版ステータス出版済み - 1998

All Science Journal Classification (ASJC) codes

  • 信号処理
  • ハードウェアとアーキテクチャ
  • 計算理論と計算数学

フィンガープリント

「A self-stabilizing ring orientation algorithm with a smaller number of processor states」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル