A stochastic model to predict off/on cooling schedule in dwellings applied by multilayered neural network

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

In our previous study (Tanimoto & Hagishima (2005), Energy and Buildings 37), a set of state transition probabilities for the Markov Chain dealing with on/off cooling schedule in dwellings was proposed. Obtained probability of turning on an air conditioning system was defined in a form of Sigmoid-function by indoor globe temperature. Obviously, a real stochastic event of shifting from the off to on state cannot be affected by only indoor environmental parameters but also by other complex factors such as presence probability of family members, time, either weekday or holiday etc. In this paper, we report an alternative model based on the Multilayered Neural Network to predict off/on cooling schedule. We gathered field measurement data on familial dwellings during summer 2008 by deploying handy type hygrothermal meters with self-recording functions to measure room air, globe and blow-off air temperature of an air conditioner. The assumed Multilayered Neural Network has 9 nodes in both input and hidden layers, and 1 single node in output layer implying either state shifting from off toon (1) or not (0). The information given to the input layer nodes consists of what time, whether weekday of holiday, presence probability of inhabitants and PPD (Predicted Percentage of Dissatisfied). PPD derived from the theory of PMV is applied as a representative parameter for the indoor environment instead of globe temperature, since it contains various influences. The field measurement data sets were divided into two parts: teaching data and data for validation. The model trained by the teaching data was confirmed to reproduce state transition characteristic of the validation period, which seems complex and is determined by various inhabitants' manners. The model performance to reproduce is observed much excellent than the previous model derived from the Markov Chain.

元の言語英語
ページ(範囲)937-942
ページ数6
ジャーナルJournal of Environmental Engineering
74
発行部数642
DOI
出版物ステータス出版済み - 8 1 2009

Fingerprint

Stochastic models
Cooling
Neural networks
Markov processes
Teaching
Air
Air conditioning
Temperature

All Science Journal Classification (ASJC) codes

  • Environmental Engineering

これを引用

@article{0d94270a67f44375bcec3a4b5bfd7d85,
title = "A stochastic model to predict off/on cooling schedule in dwellings applied by multilayered neural network",
abstract = "In our previous study (Tanimoto & Hagishima (2005), Energy and Buildings 37), a set of state transition probabilities for the Markov Chain dealing with on/off cooling schedule in dwellings was proposed. Obtained probability of turning on an air conditioning system was defined in a form of Sigmoid-function by indoor globe temperature. Obviously, a real stochastic event of shifting from the off to on state cannot be affected by only indoor environmental parameters but also by other complex factors such as presence probability of family members, time, either weekday or holiday etc. In this paper, we report an alternative model based on the Multilayered Neural Network to predict off/on cooling schedule. We gathered field measurement data on familial dwellings during summer 2008 by deploying handy type hygrothermal meters with self-recording functions to measure room air, globe and blow-off air temperature of an air conditioner. The assumed Multilayered Neural Network has 9 nodes in both input and hidden layers, and 1 single node in output layer implying either state shifting from off toon (1) or not (0). The information given to the input layer nodes consists of what time, whether weekday of holiday, presence probability of inhabitants and PPD (Predicted Percentage of Dissatisfied). PPD derived from the theory of PMV is applied as a representative parameter for the indoor environment instead of globe temperature, since it contains various influences. The field measurement data sets were divided into two parts: teaching data and data for validation. The model trained by the teaching data was confirmed to reproduce state transition characteristic of the validation period, which seems complex and is determined by various inhabitants' manners. The model performance to reproduce is observed much excellent than the previous model derived from the Markov Chain.",
author = "Jun Tanimoto and Aya Hagishima",
year = "2009",
month = "8",
day = "1",
doi = "10.3130/aije.74.937",
language = "English",
volume = "74",
pages = "937--942",
journal = "Journal of Environmental Engineering (Japan)",
issn = "1348-0685",
publisher = "Architectural Institute of Japan",
number = "642",

}

TY - JOUR

T1 - A stochastic model to predict off/on cooling schedule in dwellings applied by multilayered neural network

AU - Tanimoto, Jun

AU - Hagishima, Aya

PY - 2009/8/1

Y1 - 2009/8/1

N2 - In our previous study (Tanimoto & Hagishima (2005), Energy and Buildings 37), a set of state transition probabilities for the Markov Chain dealing with on/off cooling schedule in dwellings was proposed. Obtained probability of turning on an air conditioning system was defined in a form of Sigmoid-function by indoor globe temperature. Obviously, a real stochastic event of shifting from the off to on state cannot be affected by only indoor environmental parameters but also by other complex factors such as presence probability of family members, time, either weekday or holiday etc. In this paper, we report an alternative model based on the Multilayered Neural Network to predict off/on cooling schedule. We gathered field measurement data on familial dwellings during summer 2008 by deploying handy type hygrothermal meters with self-recording functions to measure room air, globe and blow-off air temperature of an air conditioner. The assumed Multilayered Neural Network has 9 nodes in both input and hidden layers, and 1 single node in output layer implying either state shifting from off toon (1) or not (0). The information given to the input layer nodes consists of what time, whether weekday of holiday, presence probability of inhabitants and PPD (Predicted Percentage of Dissatisfied). PPD derived from the theory of PMV is applied as a representative parameter for the indoor environment instead of globe temperature, since it contains various influences. The field measurement data sets were divided into two parts: teaching data and data for validation. The model trained by the teaching data was confirmed to reproduce state transition characteristic of the validation period, which seems complex and is determined by various inhabitants' manners. The model performance to reproduce is observed much excellent than the previous model derived from the Markov Chain.

AB - In our previous study (Tanimoto & Hagishima (2005), Energy and Buildings 37), a set of state transition probabilities for the Markov Chain dealing with on/off cooling schedule in dwellings was proposed. Obtained probability of turning on an air conditioning system was defined in a form of Sigmoid-function by indoor globe temperature. Obviously, a real stochastic event of shifting from the off to on state cannot be affected by only indoor environmental parameters but also by other complex factors such as presence probability of family members, time, either weekday or holiday etc. In this paper, we report an alternative model based on the Multilayered Neural Network to predict off/on cooling schedule. We gathered field measurement data on familial dwellings during summer 2008 by deploying handy type hygrothermal meters with self-recording functions to measure room air, globe and blow-off air temperature of an air conditioner. The assumed Multilayered Neural Network has 9 nodes in both input and hidden layers, and 1 single node in output layer implying either state shifting from off toon (1) or not (0). The information given to the input layer nodes consists of what time, whether weekday of holiday, presence probability of inhabitants and PPD (Predicted Percentage of Dissatisfied). PPD derived from the theory of PMV is applied as a representative parameter for the indoor environment instead of globe temperature, since it contains various influences. The field measurement data sets were divided into two parts: teaching data and data for validation. The model trained by the teaching data was confirmed to reproduce state transition characteristic of the validation period, which seems complex and is determined by various inhabitants' manners. The model performance to reproduce is observed much excellent than the previous model derived from the Markov Chain.

UR - http://www.scopus.com/inward/record.url?scp=79954468669&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79954468669&partnerID=8YFLogxK

U2 - 10.3130/aije.74.937

DO - 10.3130/aije.74.937

M3 - Article

AN - SCOPUS:79954468669

VL - 74

SP - 937

EP - 942

JO - Journal of Environmental Engineering (Japan)

JF - Journal of Environmental Engineering (Japan)

SN - 1348-0685

IS - 642

ER -