### 抜粋

In this paper we propose a new multivariate generalization of a one-sided test in a way-different from that of Kud{circled ring operator} (1963). Let X be a p-variate normal random variable with the mean vector μ. and a known covariance matrix. We consider the null hypothesis that μ. lies on the boundary of a convex polyhedral cone determined by linear inequalities; the alternative is that μ lies in its interior. A two-sided version is also discussed. This paper provides likelihood ratio tests and some applications along with some discussion of the geometry of convex polyhedral cones.

元の言語 | 英語 |
---|---|

ページ（範囲） | 429-439 |

ページ数 | 11 |

ジャーナル | Biometrika |

巻 | 67 |

発行部数 | 2 |

DOI | |

出版物ステータス | 出版済み - 12 1 1980 |

### All Science Journal Classification (ASJC) codes

- Statistics, Probability and Uncertainty
- Applied Mathematics
- Mathematics(all)
- Statistics and Probability
- Agricultural and Biological Sciences (miscellaneous)
- Agricultural and Biological Sciences(all)

## フィンガープリント A test of a multivariate normal mean with composite hypotheses determined by linear inequalities' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Sasabuchi, S. (1980). A test of a multivariate normal mean with composite hypotheses determined by linear inequalities.

*Biometrika*,*67*(2), 429-439. https://doi.org/10.1093/biomet/67.2.429