A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450

研究成果: ジャーナルへの寄稿記事

83 引用 (Scopus)

抄録

Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of v3 and v4 that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.

元の言語英語
ページ(範囲)9806-9816
ページ数11
ジャーナルJournal of the American Chemical Society
123
発行部数40
DOI
出版物ステータス出版済み - 10 10 2001

Fingerprint

Hydroxylation
Alkanes
Kinetic energy
Paraffins
Cytochrome P-450 Enzyme System
Porphyrins
Theoretical Models
Stretching
Ethane
Ethanol
Iron
Trajectories
Vibration
Atoms
Molecular vibrations
Potential energy surfaces
Energy Transfer
Dihedral angle
Energy transfer
Density functional theory

All Science Journal Classification (ASJC) codes

  • Chemistry(all)

これを引用

@article{bacc24b372b4450eacc6acb2d6882e77,
title = "A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450",
abstract = "Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of v3 and v4 that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.",
author = "Kazunari Yoshizawa and T. Kamachi and Yoshihito Shiota",
year = "2001",
month = "10",
day = "10",
doi = "10.1021/ja010593t",
language = "English",
volume = "123",
pages = "9806--9816",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "40",

}

TY - JOUR

T1 - A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450

AU - Yoshizawa, Kazunari

AU - Kamachi, T.

AU - Shiota, Yoshihito

PY - 2001/10/10

Y1 - 2001/10/10

N2 - Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of v3 and v4 that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.

AB - Dynamic aspects of alkane hydroxylation mediated by Compound I of cytochrome P450 are discussed from classical trajectory calculations at the B3LYP level of density functional theory. The nuclei of the reacting system are propagated from a transition state to a reactant or product direction according to classical dynamics on a Born-Oppenheimer potential energy surface. Geometric and energetic changes in both low-spin doublet and high-spin quartet states are followed along the ethane to ethanol reaction pathway, which is partitioned into two chemical steps: the first is the H-atom abstraction from ethane by the iron-oxo species of Compound I and the second is the rebound step in which the resultant iron-hydroxo complex and the ethyl radical intermediate react to form the ethanol complex. Molecular vibrations of the C-H bond being dissociated and the O-H bond being formed are significantly activated before and after the transition state, respectively, in the H-atom abstraction. The principal reaction coordinate that can represent the first chemical step is the C-H distance or the O-H distance while other geometric parameters remain almost unchanged. The rebound process begins with the iron-hydroxo complex and the ethyl radical intermediate and ends with the formation of the ethanol complex, the essential process in this reaction being the formation of the C-O bond. The H-O-Fe-C dihedral angle corresponds to the principal reaction coordinate for the rebound step. When sufficient kinetic energy is supplied to this rotational mode, the rebound process should efficiently take place. Trajectory calculations suggest that about 200 fs is required for the rebound process under specific initial conditions, in which a small amount of kinetic energy (0.1 kcal/mol) is supplied to the transition state exactly along the reaction coordinate. An important issue about which normal mode of vibration is activated during the hydroxylation reaction is investigated in detail from trajectory calculations. A large part of the kinetic energy is distributed to the C-H and O-H stretching modes before and after the transition state for the H-atom abstraction, respectively, and a small part of the kinetic energy is distributed to the Fe-O and Fe-S stretching modes and some characteristic modes of the porphyrin ring. The porphyrin marker modes of v3 and v4 that explicitly involve Fe-N stretching motion are effectively enhanced in the hydroxylation reaction. These vibrational modes of the porphyrin ring can play an important role in the energy transfer during the enzymatic process.

UR - http://www.scopus.com/inward/record.url?scp=0035840983&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035840983&partnerID=8YFLogxK

U2 - 10.1021/ja010593t

DO - 10.1021/ja010593t

M3 - Article

C2 - 11583542

AN - SCOPUS:0035840983

VL - 123

SP - 9806

EP - 9816

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 40

ER -