A theory of concordance for non-spherical 3-knots

Vincent Blanlœil, Osamu Saeki

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

Consider a closed connected oriented 3-manifold embedded in the 5-sphere, which is called a 3-knot in this paper. For two such knots, we say that their Seifert forms are spin concordant, if they are algebraically concordant with respect to a diffeomorphism between the 3-manifolds which preserves their spin structures. Then we show that two simple fibered 3-knots are geometrically concordant if and only if they have spin concordant Seifert forms, provided that they have torsion free first homology groups. Some related results are also obtained.

本文言語英語
ページ(範囲)3955-3971
ページ数17
ジャーナルTransactions of the American Mathematical Society
354
10
DOI
出版ステータス出版済み - 10月 2002
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「A theory of concordance for non-spherical 3-knots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル