A time-integration method for stable simulation of extremely deformable hyperelastic objects

Ryo Kikuuwe

研究成果: Contribution to journalArticle査読

抄録

This paper presents a time integration method for realtime simulation of extremely deformable objects subject to geometrically nonlinear hyperelasticity. In the presented method, the equation of motion of the system is discretized by the backward Euler method, and linearly approximated through the first-order Taylor expansion. The approximate linear equation is solved with the quasi-minimal residual method (QMR), which is an iterative linear equation solver for non-symmetric or indefinite matrices. The solution is then corrected considering the nonlinear term that is omitted at the Taylor expansion. The method does not demand the constitutive law to guarantee the positive definiteness of the stiffness matrix. Experimental results show that the presented method realizes stable behavior of the simulated model under such deformation that the tetrahedral elements are almost flattened. It is also shown that QMR outperforms the biconjugate gradient stabilized method (BiCGStab) in this application.

本文言語英語
ページ(範囲)1335-1346
ページ数12
ジャーナルVisual Computer
33
10
DOI
出版ステータス出版済み - 10 1 2017

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「A time-integration method for stable simulation of extremely deformable hyperelastic objects」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル