Abstract model generation for preprocessing clause sets

Miyuki Koshimura, Mayumi Umeda, Ryuzo Hasegawa

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Abstract model generation refers to model generation for abstract clause sets in which arguments of atoms are ignored. We give two abstract clause sets which are obtained from normal clause sets. One is for checking satisfiability of the original normal clause set, Another is used for eliminating unnecessary clauses from the original one. These abstract clause sets are propositional, i.e. decidable. Thus, we can use them for preprocessing the original one.

本文言語英語
ホスト出版物のタイトルLogic for Programming, Artificial Intelligence, and Reasoning - 11th International Conference, LPAR 2004, Proceedings
出版社Springer Verlag
ページ67-78
ページ数12
ISBN(印刷版)3540252363, 9783540252368
DOI
出版ステータス出版済み - 2005
イベント11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2004 - Montevideo, ウルグアイ
継続期間: 3 14 20053 18 2005

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
3452 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2004
Countryウルグアイ
CityMontevideo
Period3/14/053/18/05

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント 「Abstract model generation for preprocessing clause sets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル