Abundance and Speciation of Surface Oxygen on Nanosized Platinum Catalysts and Effect on Catalytic Activity

Rui Serra-Maia, Christopher Winkler, Mitsushiro Murayama, Kevin Tranhuu, F. Marc Michel

研究成果: ジャーナルへの寄稿学術誌査読

9 被引用数 (Scopus)


Oxygen at the surface of nanosized platinum has a direct effect on catalytic activity of oxidation-reduction chemical reactions. However, the abundance and speciation of oxygen remain uncertain for platinum with different particle size and shape characteristics, which has hindered the development of fundamental property-activity relationships. We have characterized two commercially available platinum nanocatalysts known as Pt black and Pt nanopowder to evaluate the effects of synthesis and heating conditions on the physical and surface chemical properties, as well as on catalytic activity. Characterization using complementary electron microscopy, X-ray scattering, and spectroscopic methods showed that the larger average crystallite size of Pt nanopowder (23 nm) compared to Pt black (11 nm) corresponds with a 70% greater surface oxygen concentration. Heating the samples in air resulted in an increase in surface oxygen concentration for both nanocatalysts. Surface oxygen associated with platinum is in the form of chemisorbed oxygen, and no significant amounts of chemically bonded platinum oxide were found for any of the samples. The increase in surface oxygen abundance during heating depends on the initial size and surface oxygen content. Hydrogen peroxide decomposition rate measurements showed that larger particle size and higher surface chemisorbed oxygen correlate with enhanced catalytic activity. These results are particularly important for future studies that aim to relate the properties of platinum, or other metal nanocatalysts, with surface reactivity.

ジャーナルACS Applied Energy Materials
出版ステータス出版済み - 7月 23 2018

!!!All Science Journal Classification (ASJC) codes

  • 化学工学(その他)
  • エネルギー工学および電力技術
  • 電気化学
  • 電子工学および電気工学
  • 材料化学


「Abundance and Speciation of Surface Oxygen on Nanosized Platinum Catalysts and Effect on Catalytic Activity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。