Accelerating Vegetation Evolution with Mutation Strategy and Gbased Growth Strategy

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抜粋

We propose two strategies, mutation strategy and Gbased growth strategy, to enhance the performance of standard vegetation evolution (VEGE) that simulates the growth and reproduction of vegetation repeatedly to find the global optimum. We introduce two different mutation methods into the growth period and the maturity period individually to increase the diversity of population by simulating different types of mutations in real plants. Inspired by various growth patterns of real plants, the Gbased growth strategy is proposed to replace a completely random growth operation of standard VEGE and bias all non-optimal individuals to grow towards the current best area. We design a series of controlled experiments to evaluate the performance of our proposed strategies using 28 benchmark functions from CEC2013 suite with three different dimensions. The experimental results confirmed the mutation strategy can increase the diversity and the Gbased growth strategy plays an important role in accelerating convergence. Besides, the combination of both strategies can further improve the VEGE performance.

元の言語英語
ホスト出版物のタイトル2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019
出版者Institute of Electrical and Electronics Engineers Inc.
ページ3033-3039
ページ数7
ISBN(電子版)9781728124858
DOI
出版物ステータス出版済み - 12 2019
イベント2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019 - Xiamen, 中国
継続期間: 12 6 201912 9 2019

出版物シリーズ

名前2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019

会議

会議2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019
中国
Xiamen
期間12/6/1912/9/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Modelling and Simulation

フィンガープリント Accelerating Vegetation Evolution with Mutation Strategy and Gbased Growth Strategy' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Yu, J., & Takagi, H. (2019). Accelerating Vegetation Evolution with Mutation Strategy and Gbased Growth Strategy. : 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019 (pp. 3033-3039). [9003027] (2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SSCI44817.2019.9003027