Accelerating Vegetation Evolution with Mutation Strategy and Gbased Growth Strategy

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

We propose two strategies, mutation strategy and Gbased growth strategy, to enhance the performance of standard vegetation evolution (VEGE) that simulates the growth and reproduction of vegetation repeatedly to find the global optimum. We introduce two different mutation methods into the growth period and the maturity period individually to increase the diversity of population by simulating different types of mutations in real plants. Inspired by various growth patterns of real plants, the Gbased growth strategy is proposed to replace a completely random growth operation of standard VEGE and bias all non-optimal individuals to grow towards the current best area. We design a series of controlled experiments to evaluate the performance of our proposed strategies using 28 benchmark functions from CEC2013 suite with three different dimensions. The experimental results confirmed the mutation strategy can increase the diversity and the Gbased growth strategy plays an important role in accelerating convergence. Besides, the combination of both strategies can further improve the VEGE performance.

本文言語英語
ホスト出版物のタイトル2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3033-3039
ページ数7
ISBN(電子版)9781728124858
DOI
出版ステータス出版済み - 12 2019
イベント2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019 - Xiamen, 中国
継続期間: 12 6 201912 9 2019

出版物シリーズ

名前2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019

会議

会議2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019
国/地域中国
CityXiamen
Period12/6/1912/9/19

All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ サイエンスの応用
  • モデリングとシミュレーション

フィンガープリント

「Accelerating Vegetation Evolution with Mutation Strategy and Gbased Growth Strategy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル