Accurate semiempirical analytical formulas for spontaneous polarization by crystallographic parameters of SrTiO 3 -BaTiO 3 system by ab initio calculations

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

Spontaneous polarizations (P S ’s) of BaTiO 3 and SrTiO 3 under various conditions are calculated ab initio using different exchange-correlation functionals. The extensive theoretical sets of P S vs. ion positions are found to lie on a single curve, despite the chemical differences and the wide variations of P S and lattice parameters. This uncovers accurate simple analytical formulas of P S of SrTiO 3 -BaTiO 3 system expressed by ion positions; a single formula predicts both macroscopic and atomic-scale P S of SrTiO 3 , BaTiO 3 and SrTiO 3 -BaTiO alloys. The accuracy of the formula is demonstrated by the application to experiments, BaTiO 3 -SrTiO 3 (-CaTiO 3 ) alloys, Sr 4 Ti 4 O 12 with P S // a-axis, a parallel domain, and a headon domain. In addition, the present results verify empirically that oxygen displacement is the primary identifier and the origin of P S of SrTiO 3 and BaTiO 3 and indicate that BaTiO 3 and SrTiO 3 may transforms into new state by an extremely large strain, e.g., −3%. Furthermore, the earlier prediction of headon domain without aid of defects was confirmed. The present procedures for finding formulas can be applied to other materials.

元の言語英語
ページ(範囲)315-323
ページ数9
ジャーナルComputational Materials Science
158
DOI
出版物ステータス出版済み - 2 15 2019

Fingerprint

Ab Initio Calculations
Polarization
Ions
Scattering parameters
polarization
Lattice constants
Oxygen
Defects
Large Strain
functionals
lattice parameters
ions
Experiments
Transform
Verify
Predict
Curve
Prediction
defects
oxygen

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Computational Mathematics

これを引用

@article{b97bd82996f742158fd05d32216a6ab1,
title = "Accurate semiempirical analytical formulas for spontaneous polarization by crystallographic parameters of SrTiO 3 -BaTiO 3 system by ab initio calculations",
abstract = "Spontaneous polarizations (P S ’s) of BaTiO 3 and SrTiO 3 under various conditions are calculated ab initio using different exchange-correlation functionals. The extensive theoretical sets of P S vs. ion positions are found to lie on a single curve, despite the chemical differences and the wide variations of P S and lattice parameters. This uncovers accurate simple analytical formulas of P S of SrTiO 3 -BaTiO 3 system expressed by ion positions; a single formula predicts both macroscopic and atomic-scale P S of SrTiO 3 , BaTiO 3 and SrTiO 3 -BaTiO alloys. The accuracy of the formula is demonstrated by the application to experiments, BaTiO 3 -SrTiO 3 (-CaTiO 3 ) alloys, Sr 4 Ti 4 O 12 with P S // a-axis, a parallel domain, and a headon domain. In addition, the present results verify empirically that oxygen displacement is the primary identifier and the origin of P S of SrTiO 3 and BaTiO 3 and indicate that BaTiO 3 and SrTiO 3 may transforms into new state by an extremely large strain, e.g., −3{\%}. Furthermore, the earlier prediction of headon domain without aid of defects was confirmed. The present procedures for finding formulas can be applied to other materials.",
author = "Yukio Watanabe",
year = "2019",
month = "2",
day = "15",
doi = "10.1016/j.commatsci.2018.11.043",
language = "English",
volume = "158",
pages = "315--323",
journal = "Computational Materials Science",
issn = "0927-0256",
publisher = "Elsevier",

}

TY - JOUR

T1 - Accurate semiempirical analytical formulas for spontaneous polarization by crystallographic parameters of SrTiO 3 -BaTiO 3 system by ab initio calculations

AU - Watanabe, Yukio

PY - 2019/2/15

Y1 - 2019/2/15

N2 - Spontaneous polarizations (P S ’s) of BaTiO 3 and SrTiO 3 under various conditions are calculated ab initio using different exchange-correlation functionals. The extensive theoretical sets of P S vs. ion positions are found to lie on a single curve, despite the chemical differences and the wide variations of P S and lattice parameters. This uncovers accurate simple analytical formulas of P S of SrTiO 3 -BaTiO 3 system expressed by ion positions; a single formula predicts both macroscopic and atomic-scale P S of SrTiO 3 , BaTiO 3 and SrTiO 3 -BaTiO alloys. The accuracy of the formula is demonstrated by the application to experiments, BaTiO 3 -SrTiO 3 (-CaTiO 3 ) alloys, Sr 4 Ti 4 O 12 with P S // a-axis, a parallel domain, and a headon domain. In addition, the present results verify empirically that oxygen displacement is the primary identifier and the origin of P S of SrTiO 3 and BaTiO 3 and indicate that BaTiO 3 and SrTiO 3 may transforms into new state by an extremely large strain, e.g., −3%. Furthermore, the earlier prediction of headon domain without aid of defects was confirmed. The present procedures for finding formulas can be applied to other materials.

AB - Spontaneous polarizations (P S ’s) of BaTiO 3 and SrTiO 3 under various conditions are calculated ab initio using different exchange-correlation functionals. The extensive theoretical sets of P S vs. ion positions are found to lie on a single curve, despite the chemical differences and the wide variations of P S and lattice parameters. This uncovers accurate simple analytical formulas of P S of SrTiO 3 -BaTiO 3 system expressed by ion positions; a single formula predicts both macroscopic and atomic-scale P S of SrTiO 3 , BaTiO 3 and SrTiO 3 -BaTiO alloys. The accuracy of the formula is demonstrated by the application to experiments, BaTiO 3 -SrTiO 3 (-CaTiO 3 ) alloys, Sr 4 Ti 4 O 12 with P S // a-axis, a parallel domain, and a headon domain. In addition, the present results verify empirically that oxygen displacement is the primary identifier and the origin of P S of SrTiO 3 and BaTiO 3 and indicate that BaTiO 3 and SrTiO 3 may transforms into new state by an extremely large strain, e.g., −3%. Furthermore, the earlier prediction of headon domain without aid of defects was confirmed. The present procedures for finding formulas can be applied to other materials.

UR - http://www.scopus.com/inward/record.url?scp=85057194653&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057194653&partnerID=8YFLogxK

U2 - 10.1016/j.commatsci.2018.11.043

DO - 10.1016/j.commatsci.2018.11.043

M3 - Article

VL - 158

SP - 315

EP - 323

JO - Computational Materials Science

JF - Computational Materials Science

SN - 0927-0256

ER -