ACp criterion for semiparametric causal inference

Takamichi Baba, Takayuki Kanemori, Yoshiyuki Ninomiya

研究成果: Contribution to journalArticle査読

4 被引用数 (Scopus)

抄録

For marginal structural models, which play an important role in causal inference, we consider a model selection problem within a semiparametric framework using inverse-probability-weighted estimation or doubly robust estimation. In this framework, the modelling target is a potential outcome that may be missing, so there is no classical information criterion. We define a mean squared error for treating the potential outcome and derive an asymptotic unbiased estimator as a Cp criterion using an ignorable treatment assignment condition. Simulation shows that the proposed criterion outperforms a conventional one by providing smaller squared errors and higher frequencies of selecting the true model in all the settings considered. Moreover, in a real-data analysis we found a clear difference between the two criteria.

本文言語英語
ページ(範囲)845-861
ページ数17
ジャーナルBiometrika
104
4
DOI
出版ステータス出版済み - 12 1 2017

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Mathematics(all)
  • Agricultural and Biological Sciences (miscellaneous)
  • Agricultural and Biological Sciences(all)
  • Statistics, Probability and Uncertainty
  • Applied Mathematics

フィンガープリント 「AC<sub>p</sub> criterion for semiparametric causal inference」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル