Activated carbon and graphene nanoplatelets based novel composite for performance enhancement of adsorption cooling cycle

Animesh Pal, Kutub Uddin, Kyaw Thu, Bidyut Baran Saha

研究成果: Contribution to journalArticle

17 引用 (Scopus)

抜粋

Adsorption cooling systems powered by low-grade thermal or renewable energy are considered as a potential alternative to the vapor compression systems. To improve the performance and compactness of the system, this study focuses on the synthesis and characterization of activated carbon (AC) composite employing graphene nanoplatelets (GNPs) namely H-grade and C-grade, and polyvinyl alcohol. The influence of GNPs on the porous properties, thermal conductivity, and ethanol adsorption characteristics of composites have been experimentally investigated. Porous properties results show that the studied composites possess high surface area and pore volume with microporous nature. The C-grade contained composite shows the higher porous properties compared to H-grade, however, thermal conductivity for the later one is the highest. The highest thermal conductivity is found to be 1.55 W m−1 K−1 for H-grade (40 wt%) contained composite which is 23.5 times higher than that of powder AC. Ethanol adsorption characteristics on studied composites are conducted gravimetrically at adsorption temperatures 30–70 °C. Experimental data are also fitted with Tóth and Dubinin-Astakhov (D-A) isotherm models within ±5% RMSD and found 23% improvement of effective volumetric uptake for H25 (20 wt%) composite compared to parent AC. The instantaneous ethanol adsorption uptake onto composites has also been presented for adsorption temperature 30 °C and evaporator pressure at 1.8 kPa.

元の言語英語
ページ(範囲)134-148
ページ数15
ジャーナルEnergy Conversion and Management
180
DOI
出版物ステータス出版済み - 1 15 2019

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

フィンガープリント Activated carbon and graphene nanoplatelets based novel composite for performance enhancement of adsorption cooling cycle' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用