Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells

Baoli Qin, hiroshi ariyama, Eishi Baba, Risa Tanaka, Hitoshi Kusaba, Mine Harada, Shuji Nakano

研究成果: ジャーナルへの寄稿記事

32 引用 (Scopus)

抄録

Purpose: Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Methods: Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. Results: Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. Conclusion: Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.

元の言語英語
ページ(範囲)577-584
ページ数8
ジャーナルCancer Chemotherapy and Pharmacology
58
発行部数5
DOI
出版物ステータス出版済み - 11 1 2006

Fingerprint

Gallbladder
Epidermal Growth Factor Receptor
Adenocarcinoma
Chemical activation
Cells
Cell Line
Cell Cycle
gefitinib
Cell Cycle Resting Phase
Phosphorylation
ras Genes
src-Family Kinases
Flow cytometry
Oncogene Proteins
G1 Phase
Cytotoxicity
Protein-Tyrosine Kinases
Tyrosine
Assays
Flow Cytometry

All Science Journal Classification (ASJC) codes

  • Oncology
  • Toxicology
  • Pharmacology
  • Cancer Research
  • Pharmacology (medical)

これを引用

@article{65b095a24ded4611883e5c0ee6f12736,
title = "Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells",
abstract = "Purpose: Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Methods: Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. Results: Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. Conclusion: Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.",
author = "Baoli Qin and hiroshi ariyama and Eishi Baba and Risa Tanaka and Hitoshi Kusaba and Mine Harada and Shuji Nakano",
year = "2006",
month = "11",
day = "1",
doi = "10.1007/s00280-006-0219-4",
language = "English",
volume = "58",
pages = "577--584",
journal = "Cancer Chemotherapy and Pharmacology",
issn = "0344-5704",
publisher = "Springer Verlag",
number = "5",

}

TY - JOUR

T1 - Activated Src and Ras induce gefitinib resistance by activation of signaling pathways downstream of epidermal growth factor receptor in human gallbladder adenocarcinoma cells

AU - Qin, Baoli

AU - ariyama, hiroshi

AU - Baba, Eishi

AU - Tanaka, Risa

AU - Kusaba, Hitoshi

AU - Harada, Mine

AU - Nakano, Shuji

PY - 2006/11/1

Y1 - 2006/11/1

N2 - Purpose: Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Methods: Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. Results: Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. Conclusion: Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.

AB - Purpose: Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been demonstrated to exhibit its antitumor activity by the blockade of EGF receptor, the role of signaling pathways downstream of EGFR in gefitinib sensitivity remains unknown. In this study, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Methods: Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively. Results: Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Gefitinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-src-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially reversed the gefitinib resistance, with concomitant inhibition of Akt and Erk. Conclusion: Our results suggest that activated Ras and Src could induce gefitinib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationale for assessment of these specific signaling molecules downstream of EGFR to customize treatment.

UR - http://www.scopus.com/inward/record.url?scp=33746709922&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33746709922&partnerID=8YFLogxK

U2 - 10.1007/s00280-006-0219-4

DO - 10.1007/s00280-006-0219-4

M3 - Article

VL - 58

SP - 577

EP - 584

JO - Cancer Chemotherapy and Pharmacology

JF - Cancer Chemotherapy and Pharmacology

SN - 0344-5704

IS - 5

ER -