Adaptive background model registration for moving cameras

Tsubasa Minematsu, Hideaki Uchiyama, Atsushi Shimada, Hajime Nagahara, Rin ichiro Taniguchi

研究成果: Contribution to journalArticle査読

6 被引用数 (Scopus)

抄録

We propose a framework for adaptively registering background models with an image for background subtraction with moving cameras. Existing methods search for a background model using a fixed window size, to suppress the number of false positives when detecting the foreground. However, these approaches result in many false negatives because they may use inappropriate window sizes. The appropriate size depends on various factors of the target scenes. To suppress false detections, we propose adaptively controlling the method parameters, which are typically determined heuristically. More specifically, the search window size for background registration and the foreground detection threshold are automatically determined using the re-projection error computed by the homography based camera motion estimate. Our method is based on the fact that the error at a pixel is low if it belongs to background and high if it does not. We quantitatively confirmed that the proposed framework improved the background subtraction accuracy when applied to images from moving cameras in various public datasets.

本文言語英語
ページ(範囲)86-95
ページ数10
ジャーナルPattern Recognition Letters
96
DOI
出版ステータス出版済み - 9 1 2017

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

フィンガープリント 「Adaptive background model registration for moving cameras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル