Adaptive-scale robust estimator using distribution model fitting

Thanh Trung Ngo, Hajime Nagahara, Ryusuke Sagawa, Yasuhiro Mukaigawa, Masahiko Yachida, Yasushi Yagi

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 引用 (Scopus)

抜粋

We propose a new robust estimator for parameter estimation in highly noisy data with multiple structures and without prior information on the noise scale of inliers. This is a diagnostic method that uses random sampling like RANSAC, but adaptively estimates the inlier scale using a novel adaptive scale estimator. The residual distribution model of inliers is assumed known, such as a Gaussian distribution. Given a putative solution, our inlier scale estimator attempts to extract a distribution for the inliers from the distribution of all residuals. This is done by globally searching a partition of the total distribution that best fits the Gaussian distribution. Then, the density of the residuals of estimated inliers is used as the score in the objective function to evaluate the putative solution. The output of the estimator is the best solution that gives the highest score. Experiments with various simulations and real data for line fitting and fundamental matrix estimation are carried out to validate our algorithm, which performs better than several of the latest robust estimators.

元の言語英語
ホスト出版物のタイトルComputer Vision, ACCV 2009 - 9th Asian Conference on Computer Vision, Revised Selected Papers
ページ287-298
ページ数12
エディションPART 3
DOI
出版物ステータス出版済み - 2010
イベント9th Asian Conference on Computer Vision, ACCV 2009 - Xi'an, 中国
継続期間: 9 23 20099 27 2009

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
番号PART 3
5996 LNCS
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

その他

その他9th Asian Conference on Computer Vision, ACCV 2009
中国
Xi'an
期間9/23/099/27/09

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Adaptive-scale robust estimator using distribution model fitting' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Ngo, T. T., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yachida, M., & Yagi, Y. (2010). Adaptive-scale robust estimator using distribution model fitting. : Computer Vision, ACCV 2009 - 9th Asian Conference on Computer Vision, Revised Selected Papers (PART 3 版, pp. 287-298). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 5996 LNCS, 番号 PART 3). https://doi.org/10.1007/978-3-642-12297-2_28