Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation

Mito Kanatsu-Shinohara, Takuya Yamamoto, Hidehiro Toh, Yasuhiro Kazuki, Kanako Kazuki, Junichi Imoto, Kazuho Ikeo, Motohiko Oshima, Katsuhiko Shirahige, Atsushi Iwama, Yoichi Nabeshima, Hiroyuki Sasaki, Takashi Shinohara

研究成果: ジャーナルへの寄稿学術誌査読

24 被引用数 (Scopus)


Because spermatogonial stem cells (SSCs) are immortal by serial transplantation, SSC aging in intact testes is considered to be caused by a deteriorated microenvironment. Here, we report a cell-intrinsic mode of SSC aging by glycolysis activation. Using cultured SSCs, we found that aged SSCs proliferated more actively than young SSCs and showed enhanced glycolytic activity. Moreover, they remained euploid and exhibited stable androgenetic imprinting patterns with robust SSC activity despite having shortened telomeres. Aged SSCs showed increased Wnt7b expression, which was associated with decreased Polycomb complex 2 activity. Our results suggest that aberrant Wnt7b expression activated c-jun N-terminal kinase (JNK), which down-regulated mitochondria numbers by suppressing Ppargc1a. Down-regulation of Ppargc1a probably decreased reactive oxygen species and enhanced glycolysis. Analyses of the Klotho-deficient aging mouse model and 2-y-old aged rats confirmed JNK hyperactivation and increased glycolysis. Therefore, not only microenvironment but also intrinsic activation of JNK-mediated glycolysis contributes to SSC aging.

ジャーナルProceedings of the National Academy of Sciences of the United States of America
出版ステータス出版済み - 8月 13 2019

!!!All Science Journal Classification (ASJC) codes

  • 一般


「Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。