TY - GEN
T1 - Aiding OpenFlow controller by enhancing OpenFlow's control model, and behaviour of flows
AU - Othman, Othman M.M.
AU - Okamura, Koji
N1 - Publisher Copyright:
© TNC 2013 - Innovating Together .All right reserved.
PY - 2013
Y1 - 2013
N2 - This paper shows our design of a hybrid control model for flow-based networks designed to aid the OpenFlow controller. There are many research efforts related to the flow-based networks; however, our work was inspired by OpenFlow (McKeown, et al., 2008) technology. OpenFlow is a promising future Internet enabling technology; especially that it was counted as a key enabler technology for Software Defined Networks (SDN) as explained in (Open Networking Foundation, 2012). And thus, it has a great potential to improve the current Internet by providing new functionalities and a new control scheme and thus enabling new smarter applications to be created. However, there have been some debates regarding the scalability of the OpenFlow's controller; this is due to the design of OpenFlow as it depends on a centralized controller to control flows. Our study aims to provide flow-based networks with a hybrid control model that combines both central control and distributed control, in order to provide a more relaxed control. This is done by designing two new features; network equipment to equipment flow installation, and a new type of proactive flows. Through which we aim to relieve some of the load off the central controller, make flow-based networks more self-aware, and provide a method to support flows with strict timing requirements. This hybrid control model is proposed as a step forward towards encouraging a wider adoption of flow-based networks as an easily programmed network that holds a great potential as a future Internet technology.
AB - This paper shows our design of a hybrid control model for flow-based networks designed to aid the OpenFlow controller. There are many research efforts related to the flow-based networks; however, our work was inspired by OpenFlow (McKeown, et al., 2008) technology. OpenFlow is a promising future Internet enabling technology; especially that it was counted as a key enabler technology for Software Defined Networks (SDN) as explained in (Open Networking Foundation, 2012). And thus, it has a great potential to improve the current Internet by providing new functionalities and a new control scheme and thus enabling new smarter applications to be created. However, there have been some debates regarding the scalability of the OpenFlow's controller; this is due to the design of OpenFlow as it depends on a centralized controller to control flows. Our study aims to provide flow-based networks with a hybrid control model that combines both central control and distributed control, in order to provide a more relaxed control. This is done by designing two new features; network equipment to equipment flow installation, and a new type of proactive flows. Through which we aim to relieve some of the load off the central controller, make flow-based networks more self-aware, and provide a method to support flows with strict timing requirements. This hybrid control model is proposed as a step forward towards encouraging a wider adoption of flow-based networks as an easily programmed network that holds a great potential as a future Internet technology.
UR - http://www.scopus.com/inward/record.url?scp=85126491409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126491409&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85126491409
T3 - TNC 2013 - Innovating Together
BT - TNC 2013 - Innovating Together
PB - TERENA
T2 - 29th TERENA Networking Conference: Innovating Together, TNC 2013
Y2 - 3 June 2013 through 6 June 2013
ER -