Al-Zn-Mg-Cu 合金中の IMC 粒子損傷に及ぼす水素の影響

Ryoichi Oikawa, Kazuyuki Shimizu, Yasuhiro Kamada, Hiroyuki Toda, Hiro Fujihara, Masayuki Uesugi, Akihisa Takeuchi

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)


In recent years, it has been reported that intermetallic compound particles can suppress hydrogen embrittlement by hydrogen trapping into them. Some intermetallic particles in aluminum alloys, such as Al7Cu2Fe, have internal hydrogen trap sites and it is proposed that hydrogen embrittlement can be suppressed by preferential hydrogen partitioning to these sites. However, intermetallic compound particles act as fracture origin, and excessive addition degrades the mechanical properties. In this study, we quantitatively evaluated the damage and decohesion behavior of intermetallic compound particles in high-hydrogen 7XXX aluminum alloys by using in-situ synchrotron radiation X-ray tomography. As the results, it has been revealed that hydrogen induced early high-strain localization, and the Al7Cu2Fe particles were damaged in that region due to own brittleness, resulting in early fracture. Hydrogen had no effect on the fracture and debonding behavior of intermetallic compound particles, suggesting that observed brittle fracture of particles is dependent on the mechanical properties of the particles.

寄稿の翻訳タイトルInfluence of hydrogen on the damage behavior of IMC particles in Al-Zn-Mg-Cu alloys
ジャーナルKeikinzoku/Journal of Japan Institute of Light Metals
出版ステータス出版済み - 2022

!!!All Science Journal Classification (ASJC) codes

  • 材料力学
  • 機械工学
  • 金属および合金
  • 材料化学


「Al-Zn-Mg-Cu 合金中の IMC 粒子損傷に及ぼす水素の影響」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。