Algorithms for Coloring Reconfiguration Under Recolorability Digraphs

Soichiro Fujii, Yuni Iwamasa, Kei Kimura, Akira Suzuki

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

In the k-Recoloring problem, we are given two (vertex-)colorings of a graph using k colors, and asked to transform one into the other by recoloring only one vertex at a time, while at all times maintaining a proper k-coloring. This problem is known to be solvable in polynomial time if k ≤ 3, and is PSPACE-complete if k ≥ 4. In this paper, we consider a (directed) recolorability constraint on the k colors, which forbids some pairs of colors to be recolored directly. The recolorability constraint is given in terms of a digraph -→R, whose vertices correspond to the colors and whose arcs represent the pairs of colors that can be recolored directly. We provide algorithms for the problem based on the structure of recolorability constraints -→R, showing that the problem is solvable in linear time when -→R is a directed cycle or is in a class of multitrees.

本文言語英語
ホスト出版物のタイトル33rd International Symposium on Algorithms and Computation, ISAAC 2022
編集者Sang Won Bae, Heejin Park
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959772587
DOI
出版ステータス出版済み - 12月 1 2022
イベント33rd International Symposium on Algorithms and Computation, ISAAC 2022 - Virtual, Online, 韓国
継続期間: 12月 19 202212月 21 2022

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
248
ISSN(印刷版)1868-8969

会議

会議33rd International Symposium on Algorithms and Computation, ISAAC 2022
国/地域韓国
CityVirtual, Online
Period12/19/2212/21/22

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「Algorithms for Coloring Reconfiguration Under Recolorability Digraphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル