Alloy design of 5%Mn-Cr-C system austenitic steel

Hirokazu Tsukahara, Takuro Masumura, Toshihiro Tsuchiyama, Setsuo Takaki, Koichi Nakashima, Kazukuni Hase, Shigeru Endo

研究成果: ジャーナルへの寄稿学術誌査読


The range of chemical composition for obtaining austenitic single structure was defined in medium-manganese carbon steels. Among the defined composition, Fe-5%Mn-4%Cr-(0.8~1.4)%C was selected as the optimum range of composition to form stable austenitic structure. The tensile property and deformation substructure were investigated in the austenitic steels with corresponding composition. As a result, the work hardening behavior of the steels was varied depending on the carbon content, which was closely related with the development of deformation microstructure. In the 0.8%C steel, deformation-induced martensitic transformation as well as deformation twinning caused large work hardening until fracture took place. With increasing carbon content, namely increasing SFE, the deformation mode tended to shift to dislocation slipping, resulting in the lower work hardening rate. This trend seems to be similar to conventional TWIP steel where the work hardening behavior is explained with SFE.

ジャーナルTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
出版ステータス出版済み - 2013

!!!All Science Journal Classification (ASJC) codes

  • 凝縮系物理学
  • 物理化学および理論化学
  • 金属および合金
  • 材料化学


「Alloy design of 5%Mn-Cr-C system austenitic steel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。