Almost linear time computation of maximal repetitions in run length encoded strings

研究成果: 著書/レポートタイプへの貢献会議での発言

抄録

We consider the problem of computing all maximal repetitions contained in a string that is given in run-length encoding. Given a run-length encoding of a string, we show that the maximum number of maximal repetitions contained in the string is at most m+k-1, where m is the size of the run-length encoding, and k is the number of run-length factors whose exponent is at least 2. We also show an algorithm for computing all maximal repetitions in O(m α (m)) time and O(m) space, where α denotes the inverse Ackermann function.

元の言語英語
ホスト出版物のタイトル28th International Symposium on Algorithms and Computation, ISAAC 2017
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
92
ISBN(電子版)9783959770545
DOI
出版物ステータス出版済み - 12 1 2017
イベント28th International Symposium on Algorithms and Computation, ISAAC 2017 - Phuket, タイ
継続期間: 12 9 201712 22 2017

その他

その他28th International Symposium on Algorithms and Computation, ISAAC 2017
タイ
Phuket
期間12/9/1712/22/17

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Fujishige, Y., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2017). Almost linear time computation of maximal repetitions in run length encoded strings. : 28th International Symposium on Algorithms and Computation, ISAAC 2017 (巻 92). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ISAAC.2017.33

Almost linear time computation of maximal repetitions in run length encoded strings. / Fujishige, Yuta; Nakashima, Yuto; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

28th International Symposium on Algorithms and Computation, ISAAC 2017. 巻 92 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2017.

研究成果: 著書/レポートタイプへの貢献会議での発言

Fujishige, Y, Nakashima, Y, Inenaga, S, Bannai, H & Takeda, M 2017, Almost linear time computation of maximal repetitions in run length encoded strings. : 28th International Symposium on Algorithms and Computation, ISAAC 2017. 巻. 92, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 28th International Symposium on Algorithms and Computation, ISAAC 2017, Phuket, タイ, 12/9/17. https://doi.org/10.4230/LIPIcs.ISAAC.2017.33
Fujishige Y, Nakashima Y, Inenaga S, Bannai H, Takeda M. Almost linear time computation of maximal repetitions in run length encoded strings. : 28th International Symposium on Algorithms and Computation, ISAAC 2017. 巻 92. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2017 https://doi.org/10.4230/LIPIcs.ISAAC.2017.33
Fujishige, Yuta ; Nakashima, Yuto ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Almost linear time computation of maximal repetitions in run length encoded strings. 28th International Symposium on Algorithms and Computation, ISAAC 2017. 巻 92 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2017.
@inproceedings{89f86981d5fa478288220279597141b6,
title = "Almost linear time computation of maximal repetitions in run length encoded strings",
abstract = "We consider the problem of computing all maximal repetitions contained in a string that is given in run-length encoding. Given a run-length encoding of a string, we show that the maximum number of maximal repetitions contained in the string is at most m+k-1, where m is the size of the run-length encoding, and k is the number of run-length factors whose exponent is at least 2. We also show an algorithm for computing all maximal repetitions in O(m α (m)) time and O(m) space, where α denotes the inverse Ackermann function.",
author = "Yuta Fujishige and Yuto Nakashima and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2017",
month = "12",
day = "1",
doi = "10.4230/LIPIcs.ISAAC.2017.33",
language = "English",
volume = "92",
booktitle = "28th International Symposium on Algorithms and Computation, ISAAC 2017",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",

}

TY - GEN

T1 - Almost linear time computation of maximal repetitions in run length encoded strings

AU - Fujishige, Yuta

AU - Nakashima, Yuto

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2017/12/1

Y1 - 2017/12/1

N2 - We consider the problem of computing all maximal repetitions contained in a string that is given in run-length encoding. Given a run-length encoding of a string, we show that the maximum number of maximal repetitions contained in the string is at most m+k-1, where m is the size of the run-length encoding, and k is the number of run-length factors whose exponent is at least 2. We also show an algorithm for computing all maximal repetitions in O(m α (m)) time and O(m) space, where α denotes the inverse Ackermann function.

AB - We consider the problem of computing all maximal repetitions contained in a string that is given in run-length encoding. Given a run-length encoding of a string, we show that the maximum number of maximal repetitions contained in the string is at most m+k-1, where m is the size of the run-length encoding, and k is the number of run-length factors whose exponent is at least 2. We also show an algorithm for computing all maximal repetitions in O(m α (m)) time and O(m) space, where α denotes the inverse Ackermann function.

UR - http://www.scopus.com/inward/record.url?scp=85038564653&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038564653&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.ISAAC.2017.33

DO - 10.4230/LIPIcs.ISAAC.2017.33

M3 - Conference contribution

AN - SCOPUS:85038564653

VL - 92

BT - 28th International Symposium on Algorithms and Computation, ISAAC 2017

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -