An analogue of Longo's canonical endomorphism for bimodule theory and its application to asymptotic inclusions

研究成果: Contribution to journalArticle査読

22 被引用数 (Scopus)

抄録

We give an analogous characterization of Longo's canonical endomorphism in the bimodule theory, and by using this, we construct an inclusion of factors of type II1 from a finite system of bimodules as a parallel construction to that of Longo-Rehren in a type III setting. When the original factors are approximately finite dimensional, we prove this new inclusion is isomorphic to the asymptotic inclusion in the sense of Ocneanu. This solves a conjecture of Longo-Rehren.

本文言語英語
ページ(範囲)249-265
ページ数17
ジャーナルInternational Journal of Mathematics
8
2
DOI
出版ステータス出版済み - 1 1 1997
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「An analogue of Longo's canonical endomorphism for bimodule theory and its application to asymptotic inclusions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル