An analysis of CGM contents pageview using SIR model and GBM

Kazuhisa Noguchi, Tomoya Iida, Eisuke Ito

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抜粋

In consumer generated media (CGM) site, such as YouTube and nicovideo, only few contents are viewed very much, but most contents are only viewed few times. Our research target CGM sites are nicovideo.jp and syosetu.com. Nicovideo.jp is a popular movie CGM site in Japan and syosetu.com is the largest novel CGM site in Japan. We already found that pageview distribution of contents in both CGM sites follow a lognormal distribution. In this paper, we consider user's content selection model which will lead lognormal distribution. We apply Geometric Brownian Motion model into SIR model. SIR model is used for simulation of population transition process or epidemic process of infection disease. In this paper, we report the results of some simulation.

元の言語英語
ホスト出版物のタイトルProceedings of 2017 International Conference on Compute and Data Analysis, ICCDA 2017
出版者Association for Computing Machinery
ページ19-22
ページ数4
ISBN(電子版)9781450352413
DOI
出版物ステータス出版済み - 5 19 2017
イベント2017 International Conference on Compute and Data Analysis, ICCDA 2017 - Lakeland, 米国
継続期間: 5 19 20175 23 2017

出版物シリーズ

名前ACM International Conference Proceeding Series
Part F130280

その他

その他2017 International Conference on Compute and Data Analysis, ICCDA 2017
米国
Lakeland
期間5/19/175/23/17

All Science Journal Classification (ASJC) codes

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications

フィンガープリント An analysis of CGM contents pageview using SIR model and GBM' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Noguchi, K., Iida, T., & Ito, E. (2017). An analysis of CGM contents pageview using SIR model and GBM. : Proceedings of 2017 International Conference on Compute and Data Analysis, ICCDA 2017 (pp. 19-22). (ACM International Conference Proceeding Series; 巻数 Part F130280). Association for Computing Machinery. https://doi.org/10.1145/3093241.3093264