An edge-signed generalization of chordal graphs, free multiplicities on braid arrangements, and their characterizations

Takuro Abe, Koji Nuida, Yasuhide Numata

研究成果: Contribution to conferencePaper査読

3 被引用数 (Scopus)

抄録

In this article, we propose a generalization of the notion of chordal graphs to signed graphs, which is based on the existence of a perfect elimination ordering for a chordal graph. We give a special kind of filtrations of the generalized chordal graphs, and show a characterization of those graphs. Moreover, we also describe a relation between signed graphs and a certain class of multiarrangements of hyperplanes, and show a characterization of free multiarrangements in that class in terms of the generalized chordal graphs, which generalizes a well-known result by Stanley on free hyperplane arrangements. Finally, we give a remark on a relation of our results with a recent conjecture by Athanasiadis on freeness characterization for another class of hyperplane arrangements.

本文言語英語
ページ1-12
ページ数12
出版ステータス出版済み - 2009
外部発表はい
イベント21st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'09 - Linz, オーストリア
継続期間: 7 20 20097 24 2009

その他

その他21st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC'09
国/地域オーストリア
CityLinz
Period7/20/097/24/09

All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「An edge-signed generalization of chordal graphs, free multiplicities on braid arrangements, and their characterizations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル