An efficient and very accurate method for calculating steady-state sensitivities in metabolic reaction systems

Fumihide Shiraishi, Erika Yoshida, Eberhard O. Voit

研究成果: Contribution to journalArticle

9 引用 (Scopus)

抜粋

Stability and sensitivity analyses of biological systems require the ad hoc writing of computer code, which is highly dependent on the particular model and burdensome for large systems. We propose a very accurate strategy to overcome this challenge. Its core concept is the conversion of the model into the format of biochemical systems theory (BST), which greatly facilitates the computation of sensitivities. First, the steady state of interest is determined by integrating the model equations toward the steady state and then using a Newton-Raphson method to fine-tune the result. The second step of conversion into the BST format requires several instances of numerical differentiation. The accuracy of this task is ensured by the use of a complex-variable Taylor scheme for all differentiation steps. The proposed strategy is implemented in a new software program, COSMOS, which automates the stability and sensitivity analysis of essentially arbitrary ODE models in a quick, yet highly accurate manner. The methods underlying the process are theoretically analyzed and illustrated with four representative examples: a simple metabolic reaction model; a model of aspartate-derived amino acid biosynthesis; a TCA-cycle model; and a modified TCA-cycle model. COSMOS has been deposited to https://github.com/BioprocessdesignLab/COSMOS.

元の言語英語
記事番号6857342
ページ(範囲)1077-1086
ページ数10
ジャーナルIEEE/ACM Transactions on Computational Biology and Bioinformatics
11
発行部数6
DOI
出版物ステータス出版済み - 11 1 2014

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Genetics
  • Applied Mathematics

フィンガープリント An efficient and very accurate method for calculating steady-state sensitivities in metabolic reaction systems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用