An extension of Chubanov’s algorithm to symmetric cones

Bruno F. Lourenço, Tomonari Kitahara, Masakazu Muramatsu, Takashi Tsuchiya

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Peña and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.

元の言語英語
ページ(範囲)117-149
ページ数33
ジャーナルMathematical Programming
173
発行部数1-2
DOI
出版物ステータス出版済み - 1 23 2019
外部発表Yes

Fingerprint

Symmetric Cone
Cones
Semidefinite Programming
Intersection
Second-order Cone Programming
Spectral Norm
Second-order Cone
Half-space
Concretes
Cone
Upper bound
Eigenvalue
Iteration
Norm
Necessary

All Science Journal Classification (ASJC) codes

  • Software
  • Mathematics(all)

これを引用

An extension of Chubanov’s algorithm to symmetric cones. / Lourenço, Bruno F.; Kitahara, Tomonari; Muramatsu, Masakazu; Tsuchiya, Takashi.

:: Mathematical Programming, 巻 173, 番号 1-2, 23.01.2019, p. 117-149.

研究成果: ジャーナルへの寄稿記事

Lourenço, Bruno F. ; Kitahara, Tomonari ; Muramatsu, Masakazu ; Tsuchiya, Takashi. / An extension of Chubanov’s algorithm to symmetric cones. :: Mathematical Programming. 2019 ; 巻 173, 番号 1-2. pp. 117-149.
@article{233c043071c84d05b12f325d1aa59986,
title = "An extension of Chubanov’s algorithm to symmetric cones",
abstract = "In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Pe{\~n}a and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.",
author = "Louren{\cc}o, {Bruno F.} and Tomonari Kitahara and Masakazu Muramatsu and Takashi Tsuchiya",
year = "2019",
month = "1",
day = "23",
doi = "10.1007/s10107-017-1207-7",
language = "English",
volume = "173",
pages = "117--149",
journal = "Mathematical Programming",
issn = "0025-5610",
publisher = "Springer-Verlag GmbH and Co. KG",
number = "1-2",

}

TY - JOUR

T1 - An extension of Chubanov’s algorithm to symmetric cones

AU - Lourenço, Bruno F.

AU - Kitahara, Tomonari

AU - Muramatsu, Masakazu

AU - Tsuchiya, Takashi

PY - 2019/1/23

Y1 - 2019/1/23

N2 - In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Peña and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.

AB - In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Peña and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.

UR - http://www.scopus.com/inward/record.url?scp=85033606766&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033606766&partnerID=8YFLogxK

U2 - 10.1007/s10107-017-1207-7

DO - 10.1007/s10107-017-1207-7

M3 - Article

AN - SCOPUS:85033606766

VL - 173

SP - 117

EP - 149

JO - Mathematical Programming

JF - Mathematical Programming

SN - 0025-5610

IS - 1-2

ER -